

Journal of Molecular Catalysis A: Chemical 195 (2003) 11-27

www.elsevier.com/locate/molcata

Dinuclear ansa zirconocene complexes as dual-site catalysts for the polymerization of ethylene

Helmut G. Alt^{*}, Rainer Ernst

Laboratorium für Anorganische Chemie der Universität Bayreuth, Lehrstuhl für Anorganische Chemie II, Postfach 10 12 51, Universitätsstraße 30, NW I, Bayreuth D-95440, Germany

Received 8 July 2002; accepted 16 September 2002

Abstract

A series of 21 dissymmetric dinuclear ansa zirconocene complexes and their ligand precursors have been synthesized and characterized. After activation with methylalumoxane (MAO), these catalysts polymerize ethylene with different productivities and polydispersities in homogeneous and heterogeneous media. The tendencies of these series are shown. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Ansa zirconocene complexes; Dual-site catalysts; Dinuclear dissymmetric complexes; Homogeneous and heterogeneous ethylene polymerization

1. Introduction

Specially designed mononuclear metallocene complexes have proven to be excellent single-site catalysts for the polymerization of ethylene [1-5]. The resulting polyolefins can be produced with a very high catalyst productivity and the polymer has a typical narrow molecular weight distribution. This fact can be disadvantageous in industrial processing. Catalyst mixtures were used to obtain broader molecular weight distributions but sometimes with the negative side-effect of a loss of productivity. It was the intention to design dissymmetric dinuclear metallocene complexes with the potential of dual-site catalysts in order to solve this problem. The known dinuclear metallocene complexes do not unify two different catalytic centers [6-13].

* Corresponding author. Tel.: +49-921-552555;

fax: +49-921-552157.

2. Results and discussion

2.1. Synthesis of the dichlorosilane and tetrachlorodisilane precursors

The dichlorosilanes and tetrachlorodisilanes **1–19** were synthesized according to Schemes 1–3.

The hexenyl derivative **5** was formed by a catalytic hydrosilation reaction [14,15].

The resulting ω -alkenyl substituted methyldichlorosilane derivatives were treated with an alkyl (i.e. methyl, ethyl or isopropyl) derivative of dichlorosilane in a catalytic hydrosilation reaction.

2.2. Synthesis of the ligand precursors

The tetrachlorodisilane derivatives were treated with four equivalents of sodium cyclopentadienide. The ligand precursors were formed by salt elimination reactions according to Scheme 4 [16–20].

E-mail address: helmut.alt@uni-bayreuth.de (H.G. Alt).

^{1381-1169/02/}\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S1381-1169(02)00534-4

Scheme 1. Synthesis of ω -alkenyl substituted methyldichlorosilane derivatives by Grignard reactions.

Scheme 2. Synthesis of ω -hexenyl methyldichlorosilane (5) by a hydrosilation reaction.

The indenyl and fluorenyl derivatives **34–40** were prepared in the same manner (Scheme 5).

The ligand precursors of the mononuclear derivatives **L1–L3** were synthesized by a similar salt elimination reaction (Scheme 6).

2.3. Preparation of the complexes

The dinuclear *ansa* zirconocene complexes **41–54** were prepared according to Scheme 7 [21,22].

The indenyl and fluorenyl complexes **55–61** were synthesized in an analogous manner (Scheme 8).

The complexes R1-R3 were synthesized for comparison purposes (Scheme 9) [17,20].

2.4. ^{13}C NMR spectra of 42 and 47

The J modulated ¹³C NMR spectrum of the symmetrical complex **42** shows four resonance signals at $\delta = 129.3$ and 113.8 ppm for the tertiary carbon atoms of the cyclopentadienyl rings and one resonance signal at $\delta = 108.1$ ppm for the corresponding quaternary carbon atoms, as well as signals at $\delta = 16.7$ and 15.5 ppm for the (CH₂)₃ bridge and at $\delta = -7.0$ ppm for the silicon-bound methyl groups (Scheme 10).

The ¹³C NMR spectrum of **47** shows resonance signals at $\delta = 129.3$, 128.7, 128.6, 128.0, 115.1, 114.8, and 113.7 ppm for the aromatic CH groups of the

Scheme 3. Formation of the tetrachlorodisilane derivatives 6-19 by hydrosilation reactions [14,15].

Scheme 4. Synthesis of the cyclopentadienyl substituted ligand precursors 20-33.

Scheme 5. Indenyl and fluorenyl ligand precursors 34-40.

Scheme 6. Reference ligand precursors L1-L3.

Scheme 7. Synthesis of the ansa zirconocene complexes 41-54 with cyclopentadienyl ligands.

Scheme 8. Fluorenyl and indenyl substituted ansa zirconocene complexes 55-61.

cyclopentadienyl rings. The quaternary carbon atoms appear at $\delta = 108.0$ and 107.5 ppm. The resonance signals for the propylidene bridge are observed at $\delta = 16.9$, 15.7, and at 11.2 ppm, and those for

the ethyl substituent occur at $\delta = 6.7 \text{ ppm}$ (CH₃) and 1.7 ppm (CH₂). The highest field signal at $\delta = -6.9 \text{ ppm}$ is assigned to the methyl substituent (Scheme 11).

Scheme 9. Reference catalyst precursors R1-R3.

Scheme 10. ¹³C NMR spectrum of 42 (S = CDCl₃).

2.5. Polymerization results

The dinuclear complexes **41–61** and the reference compounds **R1–R3** were activated with methylalumoxane (MAO) in toluene solution. The homogeneous catalyst solution was used for ethylene polymerization. For the heterogeneous polymerization, the activated catalyst solutions were treated with silica gel (1 g SiO₂/µmol(Zr)). Then the solid and dried catalyst was used for polymerization. The polymerization results are given in Table 1.

The most surprising result is that in almost all cases the catalyst productivity in the heterogeneous run is higher than under homogeneous conditions. Scheme 12 gives an overview. This result is in contrast to previous observations [15,17,21,22]. This behavior could be due to the fact that polar oxygen atoms on the surface of silica can no longer interact with the catalytic metal center and reduce the catalyst's activity. It is even likely that the dinuclear complexes form more efficiently cationic species on the surface of silica than in homogeneous solution. Due to the fact that the MAO counteranion does also occupy a large area close to the catalytic centers of the activated complexes, the polymerization may be hindered sterically.

Another tendency is obvious from Scheme 12: The longer the spacer between the two catalyst centers the higher the productivity. A bigger spacer means less

Scheme 11. ¹³C NMR spectrum of 47 (S = CDCl₃).

Table 1

Polymerization data of the catalyst precursors 41-61, of the reference catalyst precursors R1-R3 in homogeneous and heterogeneous ethylene polymerization

Complex	Activity (g(PE)/g(Zr)h) (homogeneous conditions)	Activity (g(PE)/g(Zr)h) (heterogeneous conditions)
41	122.200	109.000
42	104.400	158.000
43	120.000	180.000
44	133.100	187.700
45	134.400	201.000
46	42.200	60.800
47	50.300	75.300
48	76.400	162.000
49	82.600	165.200
50	142.500	188.600
51	48.000	66.000
52	64.400	72.200
53	80.000	79.100
54	89.900	98.500
55	172.200	313.000
56	126.000	144.800
57	126.100	151.000
58	201.700	321.000
59	152.000	239.500
60	161.300	260.000
61	184.000	295.600
R1	109.000	102.000
R2	250.000	190.000
R3	320.000	260.000

sterical stress in the molecule or in the catalyst ion pair with MAO. Scheme 13 shows this effect explicitly.

The series of complexes **46–50** with methyl and ethyl silyl groups shows the growing spacer length

and the comparison with the supported catalysts and the reference. While in homogeneous polymerizations, only the counterions have to arrange sterically, the situation in the supported catalyst can be different. The distance between the cation and the anion in the ion pair of the catalyst could be increased because of the interaction with the support. The consequence would be a higher activity of the catalyst (see [23]).

An increase in activity can also be observed when the cyclopentadienyl ligand is substituted with an indenyl or fluorenyl group (Scheme 14). This fact is known from former results [1,4,15,17,22].

Besides increasing activity because of a larger ligand sphere, Scheme 14 shows another detail: The single-site catalysts show generally higher activities under homogeneous conditions, while the supported dinuclear catalysts range on the same level as the supported mononuclear catalysts.

The impacts on the catalyst's behavior are obviously greater in case of dinuclear catalysts because the number of parameters that can influence the polymerization kinetics is higher in the case of mononuclear complexes.

The molecular weight distributions of the polyethylenes produced with the dinuclear catalysts indicate bimodal resins. The dissymmetric catalysts **47/MAO** and **50/MAO** clearly show two different molecular weights (Schemes 15 and 16).

The fact that also the symmetric catalyst **41/MAO** can produce a bimodal resin (Scheme 17) leads to the conclusion that the MAO counteranion induces the necessary dissymmetry of the active sites in the activation process.

Scheme 12. Comparison of the catalyst productivities of cyclopentadienyl substituted catalysts 41-54/MAO.

Scheme 13. Catalyst productivities of 46-50/MAO with methyl and ethyl silyl groups.

Scheme 14. Comparison of catalyst productivities of dinuclear with mononuclear catalysts.

3. Experimental

All experimental work was routinely carried out using Schlenk technique. Dried and purified argon was used as inert gas. Toluene, pentane, diethyl ether and tetrahydrofuran were purified by distillation over Na/K alloy. Ether was additionally distilled over lithium aluminum hydride. Methylene chloride was dried with CaH₂. Deuterated solvents such as chloroform-d₁ and benzene-d₆ were dried over molecular sieves (300 ppm), degassed and stored under inert gas atmosphere. Commercially available indene was distilled and stored at -28 °C. Cyclopentadiene was freshly distilled from the dimer. Methylalumoxane (30% in toluene) was supplied by Witco Company, Bergkamen. All the other starting materials were commercially available and were used without further purification.

3.1. NMR spectroscopy

The spectrometer Bruker ARX 250 was available for the recording of the NMR spectra. The organometallic compounds were prepared under inert

Scheme 15. Bimodal molecular weight distribution of polyethylene produced with 47/MAO as catalyst.

Scheme 16. Bimodal molecular weight distribution of polyethylene produced with 50/MAO as catalyst.

Scheme 17. Bimodal molecular weight distribution of polyethylene produced with 41/MAO as catalyst.

gas atmosphere (argon). The spectra were recorded at 25 °C. The chemical shifts in the ¹H NMR spectra are referred to the residual proton signal of the solvent ($\delta = 7.24$ ppm for chloroform, $\delta = 7.15$ ppm for benzene) and in the ¹³C NMR spectra to the solvent signal ($\delta = 77.0$ ppm for chloroform-d₁, $\delta = 128.0$ ppm for benzene-d₆). Tetramethylsilane ($\delta = 0.0$ ppm) was used as external calibration for ²⁹Si NMR spectra.

3.2. GC/MS spectroscopy

GC/MS spectra were performed with a HP5971A mass detector in combination with a HP5890 gas chromatograph. Helium was applied as carrier gas, a 12 m J&W fused silica column (DB 1, film 0.25 μ m) was used. The measuring program was: 3 min at 70 °C (starting phase); 20 °C/min (heating phase); variable time at 210 °C (final phase).

3.3. Mass spectroscopy

The mass spectra were recorded with a VARIAN MAT CH7 instrument, GC/MS with a VARIAN 3700

gas chromatograph in combination with a VARIAN MAT 312 mass spectrometer.

3.4. Preparation of ω -bromo-1-alkenes by elimination reaction

An amount of 440 mmol of α , ω -dibromoalkane was heated to 200 °C and 240 mmol of hexamethylphosphoric acid triamide (HMPT) was added slowly. The resulting ω -bromo-1-alkene was distilled off the reaction mixture and purified by another distillation at normal pressure. Yields: 40–60%.

3.5. Preparation of the alkyl or ω -alkenyl substituted dichlorosilane derivatives **1–4** by Grignard reaction

An amount of 6.1 g (250 mmol) of magnesium suspended in 100 ml of diethyl ether was placed in a three-necked flask with dropping funnel and reflux cooling system at 0 °C. The magnesium was activated by addition of 0.1 g I_2 . An amount of 240 mmol of an alkyl, aryl or ω -alkenyl bromide in 100 ml of ether was added slowly during 1 h. After addition of the

bromide, the mixture was stirred for another hour at room temperature.

An amount of 70 ml (450 mmol) of a trichlorosilane derivative in 100 ml of diethyl ether was placed in a Schlenk vessel. The Grignard product was added slowly to this mixture at -78 °C within 1 h and brought to room temperature within 3 h. The solvent and the excess trichlorosilane were distilled off the mixture. The residue was suspended in pentane, filtered over Na₂SO₄ and the crude product was distilled. Yields: 50–80%. The products were characterized by NMR spectroscopy (Table 2).

3.6. Preparation of 5-hexen-1-yl-methyl-dichlorosilane (5) by hydrosilation reaction

An amount of 150 mmol of 1,5-hexadiene was dissolved in 5 ml of pentane and treated with 30–50 mg hexachloroplatinic acid hydrate. An amount of 50 mmol of dichloromethylsilane was added and the mixture was stirred for 40 h. After filtration over Na₂SO₄, the solvent and the excess 1,5-hexadiene were removed in vacuo. The crude product was distilled in vacuo. Yield: 80%.

3.7. Preparation of ligand precursor L1

An amount of 4.5 g (51.1 mmol) of sodium cyclopentadienide in 50 ml of tetrahydrofurane was placed in a Schlenk vessel. An amount of 4.32 g(25.6 mmol) of dichlorodimethylsilane was added and the mixture was stirred for 15 h at room temperature. The solvent was removed in vacuo and the residue was suspended in diethyl ether. The suspension was filtered over Na₂SO₄/SiO₂ and the solvent was removed in vacuo. Yield: 80%.

3.8. Preparation of indenyl or fluorenyl substituted ligand precursors L2–L3

An amount of 52 mmol of indenyl lithium or fluorenyl lithium in 100 ml of diethyl ether was placed in a Schlenk vessel. An amount of 26 mmol of dimethyldichlorosilane dissolved in 10 ml of diethyl ether was added and the mixture was stirred for 8 h at room temperature. The suspension was filtered over Na_2SO_4/SiO_2 and the solvent was removed in vacuo. Yields: 60–70%.

3.9. Preparation of tetrachlorodisilane derivatives6–19 by hydrosilation reaction

An amount of 19.4 mmol of an ω -alkenyl-dichloromethylsilane derivative and 19.4 mmol of an alkyl substituted dichlorosilane derivative was dissolved in 5 ml of pentane. An amount of 30–50 mg of hexachloroplatinic acid was added. The mixture was stirred for 40 h at room temperature, then filtered over Na₂SO₄ and the solvent was removed in vacuo. The products were white, crystalline solids or slightly yellow highly viscous oils. Yields: 90–95%. The products were characterized by NMR spectroscopy (Table 2) and GS/MS (Table 3).

3.10. Preparation of the cyclopentadienyl substituted ligand precursors **20–33**

An amount of 6 mmol of 1,1,n,n-tetrachloro-1-alkyl-1,*n*-disila-alkane in 100 ml of diethyl ether was placed in a Schlenk vessel and 2.1 g (24 mmol) of cyclopentadienyl sodium (dissolved in 10 ml of THF) was added. The mixture was stirred for 6h at room temperature. The solvent was removed in vacuo, the residue was suspended in diethyl ether and filtered over Na₂SO₄/SiO₂. The solvent was removed in vacuo again. Yields: 90–95%. The products were characterized by NMR spectroscopy (Table 2) and GC/MS (Table 3).

3.11. Preparation of the indenyl and fluorenyl substituted ligand precursors **34–40**

An amount of 24 mmol fluorenyl lithium/indenyl lithium was dissolved in 100 ml of diethyl ether at room temperature and 6 mmol of a 1,1,3,3-tetrachloro-1-alkyl-1,3-disila-butane dissolved in 10 ml of diethyl ether was added. The reaction mixture was stirred for 4 h, then filtered over Na₂SO₄/SiO₂ and the solvent was removed in vacuo. The crude product was dissolved in pentane and crystallized at -28 °C. The products were slightly yellow powders (fluorenyl derivatives) or yellow, very viscous liquids (indenyl derivatives. Yields: 80–90%. The products were

Table	2			
NMR	data	of	compounds	1 - 44

Compound	¹ H NMR	¹³ C NMR	²⁹ Si NMR
1	n.d.	n.d.	n.d.
2	5.87-5.58 (m, 1H, vinyl-CH), 5.11-5.05	129.6 (vinyl-CH), 118.9 (vinyl-CH ₂),	28.1
	(m, 2H, vinyl-CH ₂), 2.12–2.05 (d, 2H,	28.4 (CH ₂ , allyl substituent), 4.4	
	allyl-CH ₂), 0.76 (s, 3H, Si–CH ₃)	(Si-CH ₃)	22.0
3	5.79–5.68 (m, 1H, vinyl-CH), 5.09–4.92	138.9 (vinyl-CH), 114.5 (vinyl-CH ₂), 22.0 21.7 (CH = but and substituent)	32.8
	$(m, 2H, Vinyi-CH_2), 2.11-2.07,$ 1 35 0 89 $(m, 4H, but envil CH_2), 0.45$	5.9, 21.7 (CH ₂ , butenyl substituent), 5.0 (Si CH ₂)	
	$(s_3H_SiCH_2)$	5.0 (51-C113)	
4	5.67–5.54 (m. 1H. vinvl-CH), 4.89–4.77	139.3 (vinvl-CH), 115.8 (vinvl-CH ₂),	33.0
	$(m, 2H, vinyl-CH_2), 2.08-1.92,$	36.4, 29.1, 22.0 (CH ₂ , pentenyl	
	1.47–1.40, 0.97–0.91 (m, 6H,	substituent), 5.4 (Si–CH ₃)	
	pentenyl-CH ₂), 0.57 (s, 3H, Si-CH ₃)		
5	n.d.	n.d.	32.7
6	1.29 (s, 4H, bridge), 0.89 (s, 6H, Si–CH ₃)	13.3 (CH ₂ , bridge), 4.6 (Si–CH ₃)	33.1
7	1.87-1.79, $1.35-1.28$ (m, 6H, bridge),	24.6, 16.2 (CH ₂ , bridge), 5.4 (Si–CH ₃)	31.8
0	0.80 (s, $0H$, $SI-CH_3$)	20.0. 22.5 (CH. bridge) 5.2 (Si CH.)	22.0
0	S_{i-CH_2} (iii, or, blidge), 0.81 (s, or,	29.0, 22.3 (CH ₂ , blidge), 5.3 (SI-CH ₃)	55.0
9	1.64–1.54, 1.22–1.15 (m. 10H. bridge).	35.1, 29.5, 22.1 (CH ₂ , bridge), 5.3	33.0
	0.84 (s, 3H, Si–CH ₃)	(Si-CH ₃)	
10	1.56-1.45, 1.19-1.12 (m, 12H, bridge),	31.9, 22.3, 21.6 (CH ₂ , bridge), 5.3	33.1
	0.80 (s, 6H, Si-CH ₃)	(Si–CH ₃)	
11	1.26-1.22 (m, 4H, bridge), 1.19-1.13	13.7, 12.7 (CH ₂ , bridge), 11.8	34.9 (Et-Si), 33.0 (Me-Si)
	(m, 5H, Et–CH ₃ , Et–CH ₂), 0.85	(Et–CH ₂), 6.1 (Et–CH ₃), 4.0 (Si–CH ₃)	
12	$(s, 3H, S1-CH_3)$ 1.86 1.75 1.27 1.22 (m. 611 bridge)	24.6, 22.8, 16.1 (CII bridge) 12.7	22.7 (Et S:) 21.9 (Ma S:)
14	1.80-1.75, $1.57-1.25$ (III, OH, DHuge), $1.17-1.13$ (m 5H Et_CH ₂ Et_CH ₂)	$(E_{12}, E_{12}, E_{$	55.7 (Et-51), 51.8 (Me-51)
	0.82 (s. 3H, Si–CH ₃)	(Et CH2), 0.2 (Et CH3), 5.7 (51 CH3)	
13	1.68–1.54, 1.37–1.04 (m, 8H, bridge),	n.d.	34.6 (Et-Si), 32.8 (Me-Si)
	1.19–1.06 (m, 5H, Et–CH ₃ , Et–CH ₂),		
	0.79 (s, 3H, Si–CH ₃)		
14	1.72-1.55, 1.38-0.99 (m, 10H, bridge),	n.d.	33.9 (Et-Si), 33.0 (Me-Si)
	1.23–0.97 (m, 5H, Et–CH ₃ , Et–CH ₂),		
15	0.57 (s, 3H, S1–CH ₃)	22.0. 21.0. 22.2. 22.2. 21.6. 10.0 (CU	25 1 (Et Si) 22 1 (Ma Si)
15	1.57 - 1.40, $1.18 - 1.10$ (III, $12H$, bridge), $1.15 - 1.11$ (m 5H Et_CH ₂ Et_CH ₂)	$52.0, 51.9, 22.5, 22.2, 21.0, 19.9$ (CH ₂ , bridge) 12.7 (Et_CH ₂) 5.9 (Et_CH ₂)	55.1 (Et-51), 55.1 (Me-51)
	0.80 (s. 3H. Si-CH ₂)	$4.6 (Si-CH_2)$	
16	1.49–1.33 (m, 1H, ⁱ Pr–CH), 1.21–1.17	19.0 (ⁱ Pr–CH), 16.9 (ⁱ Pr–CH ₃), 13.2,	35.9 (ⁱ Pr-Si), 33.0 (Me-Si)
	(m, 4H, bridge), 1.15-1.10 (m, 6H,	9.8 (CH ₂ , bridge), 4.9 (Si-CH ₃)	
	ⁱ Pr-CH ₃), 0.80 (s, 3H, Si-CH ₃)		
17	1.84–1.69 (m, 1H, ¹ Pr–CH), 1.33–1.06	24.4, 20.9, 16.4 (CH ₂ , bridge), 18.5	34.5 (¹ Pr-Si), 32.1 (Me-Si)
	(m, 6H, bridge), 1.16-1.11 (m, 6H, 1.16-1.11)	(¹ Pr–CH), 15.9 (¹ Pr–CH ₃), 5.2 (Si–CH ₃)	
19	$PT-CH_3$, 0.77 (s, 3H, SI-CH ₃)	25 2 22 5 22 1 21 5 18 1 (CH-	25.5 $(i\mathbf{D}_{\mathbf{r}}, \mathbf{S}_{i})$ 22.0 (Ma Si)
10	1.72-1.40, $1.18-1.05$ (III, 10H, bluge), $1.62-1.46$ (m 1H ⁱ Pr_CH) 118-1.08	bridge) 18.9 (i Pr-CH) 16.4 (i Pr-CH ₂)	55.5 (FI-51), 55.0 (Me-51)
	$(m, 6H, {}^{i}Pr-CH_3), 0.79 (s. 3H. Si-CH_3)$	5.8 (Si–CH ₃)	
19	2.19–2.06 (m, 1H, ⁱ Pr–CH), 1.72–1.40,	32.0, 31.9, 22.2, 22.1, 21.5, 18.2 (CH ₂ ,	35.9 (ⁱ Pr-Si), 33.0 (Me-Si)
	1.21-1.09 (m, 12H, bridge), 1.18-1.13	bridge), 18.5 (ⁱ Pr-CH), 16.8 (ⁱ Pr-CH ₃),	· · · ·
	(m, 6H, ⁱ Pr-CH ₃), 0.77 (s, 3H, Si-CH ₃)	5.4 (Si–CH ₃)	
20	6.89-6.36 (m, 16H, ar H, Cp), 3.06-1.98	141.9, 138.7, 133.3, 130.4 (CH, ar,	5.8, -4.9
	(m, 8H, al H, Cp), 1.51–0.22 (m, 4H,	Cp), 129.4, 122.5 (Cq, Cp), 45.6 (CH ₂ ,	
	onage), 0.02, -0.26 (s, 6H, S1-CH ₃)	ai, Cp), 19.8, 18.4 (CH ₂ , bridge), -6.8 , 7 1 (S; CH ₂)	
		= 1.1 (31 - C113)	

Table 2 (Continued)

		13C NMP	29 C: NIMD
Compound	'H NMR	C NMR	
21	6.56–6.45 (m, 16H, ar H, Cp), 2.99–2.94 (m, 8H, al H, Cp), 0.58–0.26 (m, 6H, bridge), -0.24, -0.01, -0.28 (s, 6H, Si–CH ₃)	143.4, 138.2, 132.7, 132.6, 132.3, 130.6, 130.4, 129.6 (CH, ar, Cp), 45.9, 43.7, 43.1 (CH ₂ , al, Cp), 26.3, 6.3, 6.6, 6.3, 6.1 (CH ₂ , bridge), -6.9, -7.3, -7.4 (Si-CH ₃)	6.0, -5.0
22	6.93–6.43 (m, 16H, ar H, Cp), 2.96–1.99 (m, 8H, al H, Cp), 1.51–0.22 (m, 8H, bridge), -0.06, -0.32 (s, 6H, Si–CH ₃)	142.0, 140.1, 133.3, 130.4 (CH, ar, Cp), 129.1 (C _q , Cp), 44.9 (CH ₂ , al, Cp), 26.5, 22.9, 19.8, 18.4 (CH ₂ , bridge), -5.9, -6.5 (Si-CH ₃)	6.0, -4.9
23	6.82–6.43 (m, 16H, ar H, Cp), 3.00–2.94 (m, 8H, al H, Cp), 1.21–1.14, 0.58–0.07 (m, 10H, bridge), -0.03, -0.27 (s, 6H, Si–CH ₃)	143.0, 138.1, 138.0, 132.7, 132.6, 130.7, 130.5, 130.0 (CH, Cp), 120.9, 120.7 (Cq, Cp), 51.0, 49.6 (CH, al, Cp), 45.9 (CH ₂ , al, Cp), 37.2, 29.5, 23.7, 22.9, 22.8, 14.6, 13.0 (CH ₂ , bridge), -6.7, -6.9 (Si-CH ₃)	4.1, -7.4
24	6.79–6.34 (m, 16H, ar H, Cp), 3.17–2.94 (m, 8H, al H, Cp), 1.21–1.14, 0.58–0.07 (m, 12H, bridge), -0.03, -0.27 (s, 6H, Si–CH ₃)	144.1, 138.4, 136.9, 132.2, 132.0, 130.9, 130.3, 129.7 (CH, Cp), 122.0, 120.4 (C _q , Cp), 50.2, 46.9 (CH, al, Cp), 43.9 (CH ₂ , al, Cp), 36.2, 30.9, 26.7, 24.9, 22.8, 14.4, 13.5 (CH ₂ , bridge), -6.9, -7.2 (Si-CH ₃)	4.2, -6.2
25	6.91–6.50, 5.54–5.19 (m, 16H, ar H, Cp), 3.39–2.65 (m, 8H, al H, Cp), 1.98–0.45, -0.07–0.30 (m, 12H, bridge, Et substituent, Si–CH ₃)	141.2, 140.0, 138.0 (C _q , Cp), 133.4, 133.1, 132.2, 131.0, 129.2, 128.0 (CH, ar, Cp), 49.6, 48.3 (CH, al, Cp), 46.8 (CH ₂ , al, Cp), 27.0, 15.2 (CH ₂ , bridge), 18.5 (CH ₃ , Et), 14.0 (CH ₂ , Et), -6.2 (Si-CH ₃)	5.8 (Et–Si), 4.9 (Me–Si) –4.5
26	6.75–6.12, 5.42–4.99 (m, 16H, ar H, Cp), 3.66–3.02 (m, 8H, al H, Cp), 1.69–0.50, 0.11–0.23 (m, 14H, bridge, Et substituent, Si–CH ₃)	139.9, 138.4, 138.0 (C _q , Cp), 133.0, 132.1, 132.0, 131.4, 130.2, 130.0 (CH, ar, Cp), 50.7, 50.3 (CH, al, Cp), 47.2 (CH ₂ , al, Cp), 27.6, 18.8, 16.3 (CH ₂ , bridge), 17.5 (CH ₃ , Et), 13.2 (CH ₂ , Et), -6.7 (Si–CH ₃)	6.0 (Et–Si), 5.2 (Me–Si) –4.6
27	6.81–6.64, 5.53–5.08 (m, 16H, ar H, Cp), 3.50–2.91 (m, 8H, al H, Cp), 1.67–0.13 (m, 16H, bridge, Et substituent, Si–CH ₃)	n.d.	5.7 (Et–Si), 4.6 (Me–Si) –5.0
28	6.66–6.23, 5.64–5.35 (m, 16H, ar H, Cp), 3.71–3.09 (m, 8H, al H, Cp), 1.77–0.53, 0.21–0.30 (m, 18H, bridge, Et substituent, Si–CH ₃)	138.3, 137.2, 137.0 (C _q , Cp), 133.9, 132.8, 132.0, 131.1, 130.7, 129.7 (CH, ar, Cp), 51.0, 50.4 (CH, al, Cp), 46.0 (CH ₂ , al, Cp), 27.6, 23.1, 17.4, 13.3 (CH ₂ , bridge), 18.2 (CH ₃ , Et), 12.9 (CH ₂ , Et), -5.9 (Si-CH ₃)	5.4 (Et–Si), 4.3 (Me–Si) –4.7
29	6.89–6.53, 5.44–5.29 (m, 16H, ar H, Cp), 3.56–2.84 (m, 8H, al H, Cp), 2.07–0.33, 0.01–0.03, -0.25 to 0.30 (m, 20H, bridge, Et substituent, Si–CH ₃)	139.6, 138.3 (Cq, Cp), 134.2, 133.6, 133.2, 132.4, 131.2, 130.6 (CH, ar, Cp), 49.4 (CH, al, Cp), 46.1 (CH ₂ , al, Cp), 27.6, 25.3, 18.3, 16.8, 13.7 (CH ₂ , bridge), 16.9 (CH ₃ , Et), 13.2 (CH ₂ , Et), -6.6 (Si-CH ₃)	4.6 (Et–Si), 3.6 (Me–Si) –7.6
30	6.75–6.40 (m, 16H, ar H, Cp), 3.79–3.42 (m, 8H, al H, Cp), 1.26–0.90 (m, 10H, bridge, ⁱ Pr–CH ₃), 0.72–0.50 (m, 1H, ⁱ Pr–CH), -0.18 (s, 3H, Si–CH ₃)	140.0, 139.5, 138.2 (C _q , Cp), 133.4, 133.0, 132.8, 132.5, 132.0, 130.7, 129.8 (CH, ar, Cp), 51.1, 49.7 (CH, al, Cp), 45.9 (CH ₂ , al, Cp), 25.7, 15.1 (CH ₂ , bridge), 17.6, 17.5 (CH ₃ , ¹ Pr), 15.0 (CH, ¹ Pr), -5.8 (Si-CH ₃)	6.3 (ⁱ Pr–Si) 4.8 (Me–Si) –5.8

22

Table 2 (Continued)

Compound	¹ H NMR	¹³ C NMR	²⁹ Si NMR
31	6.87–6.39 (m, 16H, ar H, Cp), 3.70–3.28 (m, 8H, al H, Cp), 1.46–1.01 (m, 12H, bridge, ⁱ Pr–CH ₃), 0.67–0.51 (m, 1H, ⁱ Pr–CH), -0.21 (s, 3H, Si–CH ₃)	139.9, 138.9, 138.7 (C _q , Cp), 133.2, 132.9, 132.8, 131.0, 130.9, 130.8 (CH, ar, Cp), 50.8, 50.6 (CH, al, Cp), 47.0 (CH ₂ , al, Cp), 27.6, 18.8, 16.3 (CH ₂ , bridge), 17.5, 17.4 (CH ₃ , ⁱ Pr), 14.2 (CH, ⁱ Pr), -65 (Si-CH ₂)	6.2 (ⁱ Pr–Si) 4.4 (Me–Si)
32	6.98–6.58 (m, 16H, ar H, Cp), 3.70–3.28 (m, 8H, al H, Cp), 1.69–0.87 (m, 16H, bridge, ⁱ Pr–CH ₃), 0.62–0.41 (m, 1H, ⁱ Pr–CH), -0.18 (s, 3H, Si–CH ₃)	(ch, 11), 130 (ch ch c	5.9 (ⁱ Pr-Si) 4.7 (Me-Si) -5.8
33	6.81–6.29 (m, 16H, ar H, Cp), 3.73–3.41 (m, 8H, al H, Cp), 2.16–1.97, 1.46–0.87 (m, 18H, bridge, ⁱ Pr–CH ₃), 0.64–0.49 (m, 1H, ⁱ Pr–CH), –0.19 (s, 3H, Si–CH ₃)	140.0, 139.4, 138.0 (Cq, Cp), 135.2, 134.7, 133.2, 131.9, 130.1, 129.8 (CH, ar, Cp), 51.0, 50.1 (CH, al, Cp), 46.3 (CH ₂ , al, Cp), 29.8, 28.4, 27.6, 18.5, 16.1, 13.2 (CH ₂ , bridge), 17.4, 17.3 (CH ₃ , ⁱ Pr), 14.2 (CH, ⁱ Pr), -6.7 (Si-CH ₃)	6.2 (ⁱ Pr-Si) 4.8 (Me-Si)
34	7.43–7.10, 6.71–6.22 (m, 24H, ar H, Ind), 3.92–3.02 (m, 8H, al H, Ind), 2.19–2.13, 1.59–0.13 (m, 15H, bridge, Et–CH ₃), -0.11–0.53 (m, 5H, Et–CH ₂ , Si–CH ₃)	143.6, 143.5, 138.2, 138.0 (C_q , Ind), 133.2, 133.1, 132.9, 130.0, 128.4, 128.3, 128.2, 128.0, 126.9, 126.7, 126.4, 126.1 (CH, ar, Ind), 46.4, 46.1, 44.0 (CH ₂ , al, Ind), 33.6, 33.5, 30.9, 24.6, 15.0, 13.5 (CH ₂ , bridge), 8.3 (CH ₃ , Et substituent), 5.2 (CH ₂ , Et substituent), -6.7 (Si-CH ₃)	5.3 (Et–Si), 4.9 (Me–Si) –5.8
35	7.76–7.29, 6.82–6.56 (m, 24H, ar H, Ind), 4.02–3.42 (m, 8H, al H, Ind), 2.19–2.13, 1.59–0.13 (m, 10H, bridge, ⁱ Pr–CH ₃), 0.14–0.42 (m, 4H, ⁱ Pr–CH, Si–CH ₃)	144.8, 144.5, 144.0 (Cq, Ind), 134.6, 134.2, 133.1, 132.3, 131.0, 130.0, 127.3, 126.8, 125.7, 124.5, 123.1, 121.3, 119.8 (CH, Ind), 47.1, 46.0, 44.1 (CH, al, Ind), 40.0 (CH ₂ , al, Ind), 35.2, 32.9, 26.3, 10.9 (CH ₂ , bridge), 18.1, 17.4, 17.0, 16.0, 11.1 (CH ₃ , CH, ⁱ Pr substituent), -4.9, -6.0 (Si-CH ₃)	6.5 (ⁱ Pr–Si) 5.0 (Me–Si) –6.1
36	7.73–6.72 (m, 24H, ar H, Ind), 3.98–3.32 (m, 8H, al H, Ind), 2.31–2.02, 1.62–0.83, 0.47–0.10 (m, 15H, bridge, ⁱ Pr–CH ₃), –0.11 to 0.35 (m, 4H, ⁱ Pr–CH, Si–CH ₃)	145.1, 144.3, 144.0 (Cq, Ind), 135.7, 134.2, 133.3, 131.2, 126.3, 125.8, 125.1, 124.0, 123.0, 122.1, 121.0, 119.4 (CH, Ind), 47.6, 44.3, 43.6 (CH, al, Ind), 39.5 (CH ₂ , al, Ind), 35.1, 32.9, 26.0, 9.9, 8.6 (CH ₂ , bridge), 18.0, 17.0, 15.6, 14.1 (CH ₃ , CH, ¹ Pr substituent), -5.1, -6.3 (Si-CH ₃)	4.1 (ⁱ Pr–Si) 1.8 (Me–Si) –7.2
37	7.90–7.37, 6.99–6.62 (m, 24H, ar H, Ind), 3.88–3.42 (m, 8H, al H, Ind), 2.31–2.02, 1.42–0.63, 0.47–0.21 (m, 18H, bridge, ⁱ Pr–CH ₃), –0.12 to 0.31 (m, 4H, ⁱ Pr–CH, Si–CH ₃)	145.0, 144.9, 144.4 (C_q , Ind), 135.3, 134.5, 134.2, 133.3, 132.2, 131.1, 129.7, 126.3, 125.8, 125.2, 124.6, 124.0, 123.1, 121.0, 120.1 (CH, Ind), 47.3, 45.2, 44.5, 44.1 (CH, al, Ind), 39.8 (CH ₂ , al, Ind), 35.2, 35.1, 33.1, 32.9, 32.8, 26.4, 26.2, 9.9, 8.6 (CH ₂ , bridge), 18.0, 17.3, 17.1, 15.9, 14.3 (CH ₃ , CH, ⁱ Pr substituent), -5.7, -5.9 (Si-CH ₃)	4.3 (ⁱ Pr–Si) 4.8 (Me–Si) –5.8

Table 2 (*Continued*)

Compound	¹ H NMR	¹³ C NMR	²⁹ Si NMR
38	7.38–6.41 (m, 32H, ar H, Flu), 4.53, 4.39 (s, 4H, al H, Flu), 1.99–1.75 (m, 6H, ⁱ Pr–CH ₃), 0.79–0.27 (m, 5H, bridge, ⁱ Pr–CH), -0.23, -0.38 (s, 3H, Si–CH ₃)	145.7, 141.2, 140.8 (C _q , Flu), 134.4, 128.6, 127.7, 126.2, 125.9, 125.8, 125.2, 124.2, 124.0 (CH, ar, Flu), 40.8, 39.7 (CH, al H, Flu), 28.4, 14.7 (CH ₂ , bridge), 17.4, 17.3, 9.9 (CH ₃ , CH, ¹ Pr substituent), -5.2, -7.1 (Si-CH ₃)	3.3 (ⁱ Pr-Si) 1.8 (Me-Si) -7.8
39	7.47–6.69 (m, 32H, ar H, Flu), 4.31, 4.19 (s, 4H, al H, Flu), 2.11–1.82 (m, 6H, ⁱ Pr–CH ₃), 0.81–0.20 (m, 7H, bridge, ⁱ Pr–CH), -0.09, -0.27 (s, 3H, Si–CH ₃)	144.9, 144.1, 140.8 (C_q , Flu), 134.4, 131.8, 128.4, 127.3, 126.7, 126.0, 124.8, 124.52, 124.2, 123.8 (CH, ar, Flu), 41.0, 39.3 (CH, al H, Flu), 28.4, 21.6, 13.5 (CH ₂ , bridge), 17.6, 17.5, 10.1 (CH ₃ , CH, ⁱ Pr substituent), -5.2, -7.1 (Si-CH ₃)	2.3 (ⁱ Pr–Si) –0.5 (Me–Si) –7.9
40	7.59–6.72 (m, 32H, ar H, Flu), 4.47, 4.30 (s, 4H, al H, Flu), 2.06–1.75 (m, 6H, ⁱ Pr–CH ₃), 1.89–1.34, 0.83–0.31 (m, 13H, bridge, ⁱ Pr–CH), -0.03, -0.18 (s, 3H, Si–CH ₃)	n.d.	2.3 (ⁱ Pr–Si) –0.4 (Me–Si) –8.8
41	6.78–6.66, 5.62–5.50 (m, 16H, ar H, Cp), 1.24–1.09, 0.79–0.64 (m, 4H, bridge), 0.30 (s, 6H, CH ₃)	129.0, 127.8, 114.7, 113.9 (CH, Cp), 108.2 (Cq, Cp), 12.0 (CH ₂ , bridge), -7.0 (Si-CH ₃)	-11.4
42	6.80–5.79 (m, 16H, Cp), 2.11–1.37 (m, 6H, bridge), 0.72 (s, 6H, Si–CH ₃)	129.3, 128.0, 115.1, 114.1 (CH, Cp), 108.1 (C _q , Cp), 16.7, 15.5 (CH ₂ , bridge), -7.0 (Si-CH ₃)	-12.9
43	7.12–5.87 (m, 16H, Cp), 1.93–1.20 (m, 8H, bridge), 0.74 (s, 6H, Si–CH ₃)	129.2, 128.0, 114.9, 113.8 (CH, Cp), 108.4 (Cq, Cp), 22.7, 11.1 (CH ₂ , bridge), -7.1 (Si-CH ₃)	-12.2
44	6.87–6.84, 5.67–5.61 (m, 16H, Cp), 1.51–0.83 (m, 10H, bridge), 0.26 (s, 6H, Si–CH ₃)	129.0, 127.4, 114.8, 113.8 (CH, Cp), 108.4 (C _q , Cp), 36.8, 22.8, 10.9 (CH ₂ , bridge), -7.5 (Si-CH ₃)	-12.8
45	6.97–6.79, 6.19–5.88 (m, 16H, Cp), 1.72–0.98 (m, 12H, bridge), 0.71 (s, 6H, Si–CH ₃)	129.6, 127.6, 115.2, 114.1 (CH, Cp), 108.2 (Cq, Cp), 35.7, 34.8, 24.6, 22.7, 11.1, 10.2 (CH ₂ , bridge), -6.9 (Si-CH ₃)	-12.2
46	7.20–5.96 (m, 16H, Cp), 1.37–0.68 (m, 9H, Et substituent, bridge), 0.10 (s, 3H, Si–CH ₃)	129.5, 128.1, 117.8, 116.7 (CH, Cp), 108.2, 107.3 (C _q , Cp), 11.0, 9.7 (CH ₂ , bridge), 6.2 (CH ₃ , Et substituent), 1.1 (CH ₂ , Et substituent), -6.9 (Si-CH ₃)	-10.8 (Et-Si), -11.3 (Me-Si)
47	7.03–6.87, 6.09–5.87 (m, 16H, Cp), 2.07–0.61 (m, 11H, bridge, Et substituent), 0.75 (s, 3H, Si–CH ₃)	129.3, 128.7, 128.6, 128.0, 115.1, 114.8, 113.7 (CH, Cp), 108.0, 107.5 (Cq, Cp), 16.9, 15.7, 11.2 (CH ₂ , bridge), 6.7 (CH ₃ , Et substituent), 1.7 (CH ₂ , Et substituent), -6.9 (s, 3H, Si-CH ₃)	-12.9 (Et-Si), -13.0 (Me-Si)
48	7.01–6.89, 6.07–5.90 (m, 16H, Cp), 1.89–0.57 (m, 13H, bridge, Et substituent), 0.71 (s, 3H, Si–CH ₃)	128.9, 128.7, 128.0, 117.8, 117.3, 116.7 (CH, Cp), 108.5, 108.0 (Cq, Cp), 26.9, 11.1, 9.4 (CH ₂ , bridge), 6.2 (CH ₃ , Et substituent), 1.8 (CH ₂ , Et substituent), -7.3 (Si-CH ₃)	-11.0 (Et-Si), -12.2 (Me-Si)
49	6.94–6.69, 5.95–5.80 (m, 16H, Cp), 1.49–0.52 (m, 15H, Et substituent, bridge), 0.48 (s, 3H, Si–CH ₃)	129.1, 128.5, 128.1, 114.9, 114.1, 113.9 (CH, Cp), 37.1, 22.7, 12.0, 9.3, 6.6 (CH ₂ , bridge), 6.3 (CH ₃ , Et substituent), 1.7 (CH ₂ , Et substituent), -6.7 (Si-CH ₃)	-10.9 (Et-Si),-11.4 (Me-Si)
50	6.93–6.67, 6.12–5.88 (m, 16H, Cp), 2.95–2.41, 2.07–1.68, 1.13–0.61 (m, 17H, bridge, Et substituent), 0.23 (s, 3H, Si–CH ₃)	n.d.	-11.1 (Et-Si),-11.6 (Me-Si)

Table 2 (Continued)

Compound	¹ H NMR	¹³ C NMR	²⁹ Si NMR
51	6.86–6.71, 5.85–5.43 (m, 16H, Cp), 1.74–1.30, 0.92–0.79 (m, 11H, bridge, ⁱ Pr substituent), 0.11 (s, 3H, Si–CH ₃)	129.4, 216.5, 119.8, 119.0 (CH, Cp), 125.1, 123.0 (C _q , Cp), 26.5, 25.6 (CH ₂ , bridge), 20.0 (CH ₃ , ⁱ Pr substituent), 16.5 (CH, ⁱ Pr substituent), -6.4 (Si-CH ₃)	-9.8(ⁱ Pr-Si) -10.9 (Me-Si)
52	6.98–6.80, 5.67–5.49 (m, 16H, Cp), 1.98–1.38, 0.79–0.39 (m, 13H, bridge, ⁱ Pr substiment) 0.09 (s. 3H, Si–CH ₂)	n.d.	-9.9 (ⁱ Pr-Si) -11.1 (Me-Si)
53	6.96–6.87, 5.76–5.68 (m, 16H, Cp), 1.82–0.79 (m, 17H, bridge, ⁱ Pr substituent), 0.35 (s, 3H, Si–CH ₃)	129.4, 216.5, 119.8, 119.0 (CH, Cp), 125.1, 123.0 (Cq, Cp), 26.5, 25.6 (CH ₂ , bridge), 20.0 (CH ₃ , ⁱ Pr substituent), 16.5 (CH, ⁱ Pr substituent), -6.4 (Si-CH ₃)	-9.7 (ⁱ Pr-Si) -11.0 (Me-Si)
54	6.76–5.28 (m, 16H, Cp), 2.08–0.41 (m, 19H, bridge, ⁱ Pr substituent), 0.17 (s, 3H, Si–CH ₃)	129.1, 128.0, 115.0, 114.0 (CH, Cp), 35.9, 30.0, 26.9, 22.7, 11.1, 10.5 (CH ₂ , bridge), 18.0, 16.8 (CH ₃ , ⁱ Pr substituent), 21.9 (CH, ⁱ Pr substituent), -7.1 (Si-CH ₃)	-10.0 (ⁱ Pr-Si) -12.0 (Me-Si)
55	7.71–6.60, 6.10–6.06, 5.80–5.77 (m, 24H, Ind), 2.10–0.53 (m, 20H, bridge, Et substituent, Si–CH ₃)	144.8, 144.4, 142.6, 140.9 (C _q , Ind), 129.8, 129.5, 128.6, 128.4, 128.1, 127.5, 126.4, 126.3, 125.7, 125.4, 124.1, 119.4, 104.0 (CH, Ind), 33.6, 27.2, 26.6, 24.4, 10.7, 8.9 (CH ₂ , bridge), 14.1 (CH ₃ , Et substituent), 1.6 (CH ₂ , Et substituent), -6.3 (Si-CH ₃)	-11.6 (Et-Si), -12.4 (Me-Si)
56	7.69–7.13, 6.48–6.42, 6.18–6.10 (m, 24H, Ind), 1.56–0.81 (m, 11H, bridge, ⁱ Pr substituent), 0.09 (s, 3H, Si–CH ₃)	n.d.	-10.3 (ⁱ Pr-Si) -12.9 (Me-Si)
57	7.76–6.90 (m, 24H, Ind) 2.09–1.89, 1.81–0.46 (m, 13H, bridge, ¹ Pr substituent), -0.25 (s, 3H, Si–CH ₃)	144.4, 144.0, 139.8 (C_q , Ind), 127.4, 127.2, 126.0, 125.5, 123.5, 123.1, 122.3, 122.0, 120.8, 120.5, 120.0 (CH, Ind), 26.8, 10.1, 9.8 (CH ₂ , bridge), 18.3 (CH ₃ , ⁱ Pr substituent), 13.8 (CH, ⁱ Pr substituent) -6.1 (Si=CH ₂)	-9.8 (ⁱ Pr-Si) -10.8 (Me-Si)
58	7–91–6.87, 6.39–6.33, 6.20–6.15 (m, 24H, Ind), 2.15–0.64 (m, 19H, ⁱ Pr substituent, bridge), 0.37 (s, 3H, Si–CH ₃)	140.7, 140.4, 139.9 (C _q , Ind), 132.0, 130.8, 127.5, 126.8, 126.2, 126.0, 125.4, 125.0, 124.7, 123.4, 122.3, 121.0, 104.2 (CH, Ind), 36.4, 33.7, 29.7, 27.0, 26.6, 25.4, 14.6, 9.2, 8.6 (CH ₂ , bridge), 18.3, 15.1, 13.8 (CH ₃ , CH. [†] Pr substituent), -7.0 (Si-CH ₃)	–10.7 (ⁱ Pr–Si) –12.1 (Me–Si)
59	7.90–7.76, 7.39–7.06 (m, 32H, Flu), 1.32–0.91 (m, 6H, ⁱ Pr–CH ₃), 0.46–0.37 (m, 1H, ⁱ Pr–CH), –0.36 (s, 3H, Si–CH ₃)	147.6, 147.1, 141.5 (C _q , Flu), 126.1, 125.8, 125.6, 125.1, 124.2, 120.1 (CH, Flu), 27.5, 26.4 (CH ₂ , bridge), 17.9, 17.8 (CH ₃ , ⁱ Pr substituent), 10.9 (CH, ⁱ Pr substituent), -7.9 (Si=CH ₃)	-10.2 (ⁱ Pr) -12.8 (Me-Si)
60	7.88–7.64, 7.34–7.01 (m, 32H, Flu), 2.27–1.96, 1.41–0.96 (m, 12H, bridge, ⁱ Pr–CH ₃), 0.46–0.37 (m, 1H, ⁱ Pr–CH), –0.14 (s, 3H, Si–CH ₃)	n.d.	-10.8 (ⁱ Pr-Si) -12.4 (Me-Si)
61	7.86–6.79 (m, 32H, Flu), 1.65–0.22 (m, 19H, bridge, ⁱ Pr substituent), -0.37 (s, 3H, Si–CH ₃)	146.4, 145.6, 141.3 (C _q , Flu), 130.0, 128.5, 126.5, 126.0, 124.7, 124.0, 123.4, 121.6, 121.2, 120.7, 120.2, 119.8, 119.4, 117.9 (CH, Flu), 33.7, 33.3, 27.2, 26.5, 11.7, 10.8 (CH ₂ , bridge), 18.3 (CH ₃ , ⁱ Pr substituent), 8.3 (CH, ⁱ Pr substituent), -7.2 (Si-CH ₃)	–11.0 (ⁱ Pr–Si) –12.9 (Me–Si)

n.d.: not determined.

Table 3 GC/MS data of the ligand precursors

Compound number	m/z	Compound number	m/z	Compound number	m/z
6	256	25	389	44	737
7	270	26	403	45	751
8	284	27	417	46	709
9	298	28	431	47	723
10	312	29	445	48	737
11	270	30	403	49	751
12	284	31	417	50	765
13	298	32	445	51	723
14	312	33	459	52	737
15	326	34	n.d.	53	765
16	284	35	n.d.	54	779
17	298	36	n.d.	55	765
18	326	37	n.d.	56	n.d.
19	340	38	n.d.	57	n.d.
20	375	39	n.d.	58	n.d.
21	389	40	n.d.	59	n.d.
22	403	41	695	60	n.d.
23	417	42	709	61	n.d.
24	431	43	723		

n.d.: not determined due to decomposition.

characterized by NMR spectroscopy (Table 2) and GC/MS (Table 3).

3.12. Preparation of the dinuclear metallocene complexes **41–61**

3.12.1. General procedure

An amount of 5 mmol of the ligand precursor was dissolved in 400 ml of diethyl ether and 12.5 ml of a butyl lithium solution (1.6 M in hexane; 20 mmol) was added at room temperature. The reaction mixture was stirred for 8 h. Subsequently, the solution was cooled to -78 °C, an equimolar amount of ZrCl₄ was added and then the suspension was brought to room temperature slowly within 6 h and was stirred for another 6h. The solvent was removed in vacuo, the residue was suspended in methylene chloride and the suspension was filtered over Na₂SO₄. The solvent was removed in vacuo to almost dryness, pentane was added until precipitation started and the crude product was crystallized at -28 or -78 °C. Yields: 40–80%. The complexes were characterized by NMR spectroscopy (Table 2) and GC/MS (Table 3).

The synthesis of the reference complexes **R1–R3** was performed in the same manner. The stoichiometry

of the addition of butyl lithium and zirconium tetrachloride is corresponding to the acid protons of the mononuclear ligand precursors.

3.13. Polymerization reactions

An amount of 20-25 mg of the corresponding complex was dissolved in 50 ml of toluene. A volume of the solution containing 1-2 mg of the complex was activated with MAO (30% in toluene; Al:Zr = 2500:1).

For heterogeneous polymerization reactions, silica gel was added (1 g SiO₂/ μ mol(Zr)) to this solution and stirred for 3 min. Both for homogeneous and heterogeneous polymerizations, the catalyst suspension was charged to 250 ml of pentane and transferred to a 11 Büchi laboratory autoclave and thermostated at 60 °C. An ethylene pressure of 10 bar was applied to the reactor and the catalyst was polymerized for 30 min at 60 ± 3 °C. The obtained polymer was dried in air for at least 60 h. The polymerization results and the physical data of the polymers are presented in Table 1.

Acknowledgements

We thank Phillips Petroleum Company (Bartlesville, OK, USA) and the Deutsche Forschungsgemeinschaft (DFG) for the financial support and Witco company (Bergkamen) for the donation of methylalumoxane.

References

- H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. Waymouth, Angew. Chem. 107 (1995) 1255;
 H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. Waymouth, Angew. Chem. Int. Ed. Engl. 34 (1995) 1143.
- [2] M. Bochmann, J. Chem. Soc., Dalton Trans. (1996) 255.
- [3] F. Küber, Chem. Unserer Zeit. 28 (1994) 197.
- [4] W. Kaminsky, J. Chem. Soc., Dalton Trans. (1998) 1413.
- [5] H.G. Alt, A. Köppl, Chem. Rev. 100 (2000) 1205.
- [6] W. Spaleck, F. Küber, B. Bachmann, C. Fritze, A. Winter, J. Mol. Catal. A 128 (1998) 279.
- [7] S. Ciruelos, T. Cuenca, P. Gómez-Sal, A. Manzanero, P. Royo, Organometallics 14 (1995) 177.
- [8] S.K. Noh, J. Kim, J. Jung, C.S. Ra, D. Lee, H.B. Lee, S.W. Lee, W.S. Huh, J. Organomet. Chem. 580 (1999) 90.
- [9] K.P. Reddy, J.L. Petersen, Organometallics 8 (1989) 2107.
- [10] H. Lang, S. Blau, A. Muth, K. Weiss, U. Neugebauer, J. Organomet. Chem. 490 (1995) C32.
- [11] I.E. Nifant'ev, M.V. Borzov, A.V. Churakov, S.G. Mkoyan, L.O. Atovmyan, Organometallics 11 (1992) 3942.

- [12] W. Abriel, G. Baum, H. Burdorf, J. Heck, Z. Naturforsch. (Teil B) 46 (1991) 841.
- [13] M. Bochmann, S.J. Lancaster, M.B. Hursthouse, M. Mazid, Organometallics 12 (1993) 4718.
- [14] J.L. Speier, Adv. Organomet. Chem. 17 (1979) 407.
- [15] B. Peifer, Dissertation, Universität Bayreuth, 1995.
- [16] U. Stehling, J. Diebold, R. Kirsten, W. Röll, H.-H. Brintzinger, S. Jüngling, R. Mülhaupt, F. Langhauser, Organometallics 13 (1994) 964.
- [17] S.J. Palackal, Dissertation, Universität Bayreuth, 1991.
- [18] N. Klouras, H. Köpf, Monatsh. Chem. 112 (1981) 887.
- [19] C.S. Baygur, W.R. Tikkanen, J.L. Petersen, Inorg. Chem. 24 (1985) 2539.
- [20] K. Patsidis, Dissertation, Universität Bayreuth, 1993.
- [21] R. Zenk, Dissertation, Universität Bayreuth, 1994.
- [22] H.G. Alt, S.J. Palackal, J. Organomet. Chem. 472 (1994) 113.
- [23] P. Schertl, H.G. Alt, J. Organomet. Chem. 582 (1999) 328.